
Maximal- and minimal-height distributions of fluctuating interfaces

T. J. Oliveira and F. D. A. Aarão Reis
Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil

�Received 12 November 2007; published 15 April 2008�

Maximal- and minimal-height distributions �MAHD, MIHD� of two-dimensional interfaces grown with the
nonlinear equations of Kardar-Parisi-Zhang �KPZ, second order� and of Villain-Lai-Das Sarma �VLDS, fourth
order� are shown to be different. Two universal curves may be MAHD or MIHD of each class depending on the
sign of the relevant nonlinear term, which is confirmed by results of several lattice models in the KPZ and
VLDS classes. The difference between MAHD and MIDH is connected with the asymmetry of the local height
distribution. A simple, exactly solvable deposition-erosion model is introduced to illustrate this feature. The
average extremal heights scale with the same exponent of the average roughness. In contrast to other correlated
systems, generalized Gumbel distributions do not fit those MAHD and MIHD, nor those of Edwards-Wilkinson
growth.
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I. INTRODUCTION

Extreme value statistics �EVS� was already used in sev-
eral fields of science and engineering �1,2� and has recent
important applications in surface and interface science. For
instance, it is relevant for modeling the evolution of corro-
sion damage because a material failure may occur when the
size of the deepest pit attains a critical value �3�.

In uncorrelated random variable sets where the probabil-
ity density functions �PDF� decrease faster than a power law,
a universal normalized distribution of extreme values is ob-
tained. It is usually called Gumbel’s first asymptotic distri-
bution �1,4�, g�x ;n�, which gives the probability density of
the nth extreme value of that set �normalized by the average
extreme value� lying in the range �x ,x+dx�. However, in
several physical systems where correlations are present, it
was observed that fluctuations of some global quantities
could be fit by generalized Gumbel distributions �5–7�, i.e.,
the first asymptotic distribution with noninteger n values.
This was explained by the connections between the EVS of
correlated variables and sums of independent variables
drawn from exponential PDF �8�. It shows that Gumbel sta-
tistics goes far beyond the description of uncorrelated vari-
ables sets.

EVS was already studied analytically and numerically in
one-dimensional models of fluctuating interfaces �9–11�,
showing differences from uncorrelated statistics. In two-
dimensional Edwards-Wilkinson �EW� interfaces �Brownian
curves�, a fit of the maximal-height distributions �MAHD� by
a Gumbel curve was suggested �7�, although the analytical
form of the tail of the EW MAHD is not the same as the
Gumbel curves. A common feature of those works was to
consider Gaussian interfaces with up-down reflection sym-
metry �9–11�. However, several real and model interfaces do
not possess this symmetry �12�. Important examples are the
nonlinear growth models of Kardar-Parisi-Zhang �KPZ� �13�
and of Villain-Lai-Das Sarma �VLDS� �14�, which have
many applications to real interfaces �15–17�. Height distribu-
tions �measured relatively to the average� of those systems
are asymmetric, i.e., the interfaces may be dominated by
sharp peaks and flat valleys or vice versa. This raises the

question whether MAHD and minimum-height distributions
�MIHD� are the same in these systems. Recent work on per-
sistence in VLDS growth �18� also motivates this study be-
cause the different exponents for positive and negative height
persistence may be a consequence of that asymmetry.

Besides the comparison of MAHD and MIHD in those
models, recent works on EVS of fluctuating interfaces sug-
gest additional �and not less important� questions. The first
one is connected with the possibility of fitting their extreme
height distributions �EHD� by generalized Gumbel distribu-
tions, since there is numerical evidence in the recent litera-
ture that this is possible for some correlated variable sets, the
work of Bertin �8� illustrating this possibility with exactly
solvable models. The second question is the scaling of the
average maximal height, since EW interfaces showed an un-
anticipated scaling as the square of the average roughness
�7�. It contrasts with several one-dimensional interfaces,
where average maximal height and average roughness scale
in the same way. This scaling is important to correlate the
extreme events �sharpest peaks or deepest valleys� with the
evolution of surface roughness.

The aim of this paper is to address those questions by
performing a numerical study of the MAHD and MIHD in
the steady states of the KPZ and VLDS equations and of
various lattice models belonging to those classes in 2+1 di-
mensions, which is the most relevant case for applications.
The numerical approach for KPZ and VLDS growth is nec-
essary because no analytical calculation of related quantities
are known in d=2. We will show that, for each growth class,
two universal scaled distributions are obtained, which may
be a MAHD or a MIHD depending on the sign of the coef-
ficient of the relevant nonlinear term �second order in KPZ,
fourth order in VLDS�. In order to highlight the effects that
asymmetric PDF �i.e., asymmetric distributions of local
heights� may have on MAHD and MIHD, we will discuss
their differences in a random deposition-erosion model on an
inert flat substrate. Furthermore, we will show that average
maximal and minimal heights is all those models scale as the
average roughness, thus EW in d=2 is an exception �7�.
Finally, we will show that MIHD and MAHD of KPZ,
VLDS, and EW classes in d=2 cannot be fit by generalized
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Gumbel distributions, despite reasonable fits of the peaks are
possible.

The rest of this work is organized as follows. In Sec. II we
analyze the features of MAHD and MIHD of the nonlinear
interface growth models. In Sec. III, we show the differences
between MAHD and MIHD in a simple exactly solvable
model. In Sec. IV we analyze the scaling of the average
maximal and minimal heights and compare MAHD and
MIHD with Gumbel curves. In Sec. V we summarize our
results and present our conclusions.

II. MAHD AND MIHD OF NONLINEAR INTERFACE
GROWTH MODELS

The KPZ equation

�h

�t
= �2�

2h + �2��h�2 + ��x�,t� �1�

was proposed in 1986 as a hydrodynamic description of
interface growth �13�. In Eq. �1�, h is the interface height
at position x� and time t, the linear term represents the effect
of surface tension, the nonlinear term accounts for an
excess velocity due to local slopes and � is a Gaussian

noise with zero mean and covariance ���x� , t���x�� , t���
=D�d�x� −x�� ���t− t��, where D is constant and d is the dimen-
sion of the substrate.

We integrated the KPZ equation in d=2 with a simple
Euler method, as shown in Ref. �19�, with the scheme for
suppression of instabilities of Ref. �20�. We used the cou-
pling constant g��2

2D /�2
3=24 and time increment �t=0.04,

in discretized boxes with spatial step �x=1 and linear sizes
8�L�64.

We also simulated three discrete KPZ models �i.e., models
which are described by the KPZ equation in the continuum
limit� in sizes 32�L�256: the restricted solid-on-solid
�RSOS� model �21�, the ballistic deposition �BD� �22�, and
the etching model of Mello et al. �23� �the deposition and
aggregation rules of those models can be found in the above
references and/or Ref. �12��. From inspection of their growth
rules, one knows that �2�0 for BD and the etching model
and �2	0 for the RSOS model �see, e.g., the arguments in
Ref. �24��.

For each model and each lattice size, distributions with at
least 107 different configurations were obtained to ensure
high accuracy, which is particularly important at their tails.
The extremes were calculated relatively to the average height
of each configuration, the minima being absolute values of
the differences from the average.

Figure 1�a� shows the difference between scaled MAHD
and MIHD of the KPZ equation in box size L=64. There,
P�m�dm is the probability that the extreme lies in the range
�m ,m+dm�, x��m− �m�� /
 and 
���m2�− �m�2�1/2. Curves
for smaller box sizes coincide with those in Fig. 1�a�, show-
ing that the difference between MAHD and MIHD is not a
consequence of finite-size effects.

In Fig. 1�b�, we compare those scaled distributions with
MAHD and MIHD of the discrete KPZ models. The MIHD
of the KPZ equation collapses with the MIHD of the etching

model and with the MAHD of the RSOS model. The plot
also shows the MAHD of the KPZ equation shifted down in
the vertical direction, which collapses with the shifted
MAHD of BD and MIHD of the RSOS model. Thus, MAHD
�MIHD� of models with �2�0 are equal to MIHD �MAHD�
of models with �2	0, which defines two universal EHD for
the KPZ class.

Estimates of skewness and kurtosis of those EHD quanti-
tatively confirm the visual agreement in Fig. 1�b�. The skew-
nesses of the EHD are shown in Figs. 2�a� and 2�b� as a
function of 1 /L1/2. The small finite-size dependence of the
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FIG. 1. �Color online� �a� Scaled MAHD �solid curve� and
MIHD �dashed curve� of the KPZ equation in box size L=64. �b�
Upper curves: scaled MIHD of the KPZ equation �solid curve� and
etching model �triangles�, and MAHD of the RSOS model
�squares�. Lower curves: scaled MAHD of the KPZ equation �solid
curve� and BD �triangles�, and MIHD of the RSOS model �squares�,
shifted by two decades in the vertical direction. Box size is L=64
for KPZ equation and L=256 for discrete models.
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FIG. 2. �a� Finite-size dependence of the skewness S of �a�
MAHD of the KPZ equation �squares� and etching model �tri-
angles�, and MIHD of the RSOS model �crosses�; �b� MIHD of the
KPZ equation �squares� and etching model �triangles�, and MAHD
of the RSOS model �crosses�. The variable in the abscissa was
chosen to make clearer the evolution of the data as L→�. BD data
were not shown because they superimpose the etching model data.
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data for the KPZ equation, BD, and the etching models leads
to an estimate S�0.79 for ��2�0� MAHD and ��2	0�
MIHD �Fig. 2�a��. For ��2�0� MIHD and ��2	0� MAHD,
we obtain S�0.65 �Fig. 2�b��. Surprisingly, the largest finite-
size effects are observed in the RSOS data, which uses to be
the best discrete KPZ model for numerical study of rough-
ness scaling �27�. This is probably a consequence of discreti-
zation of the very smooth surfaces of RSOS deposits.

A consequence of the difference between MAHD and
MIHD is the possibility to use them to identify the sign of
the coefficient of the nonlinear term in cases where it is not
known a priori. Certainly this demands an accurate calcula-
tion of the MAHD and MIHD because the scaled curves of
Fig. 1�a� are very close to each other. This is frequently
possible with computer models, but probably very hard with
typical experimental data. Anyway, at this point EVS is su-
perior to the scaling of the local height distributions �the
PDF�, since the latter are usually distorted by huge finite-size
effects �27�. For instance, the asymmetry of the height dis-
tributions of BD in sizes L�500 incorrectly suggests �2
	0 for that model �27�.

We also observe that the right tails of MAHD and MIHD
of the KPZ class tend to simple exponentials for large m.
Thus, these tails differ from the tails of the KPZ roughness
distributions, which are stretched exponentials �28�.

Now we analyze the EHD of the VLDS equation

�h

�t
= − �4�

4h + �4�
2��h�2 + ��x�,t� , �2�

which was originally proposed for molecular beam epitaxy.
This equation was integrated with �4=1, �4=1, D=1 /2, and
�t=0.01, using the same methods applied to the KPZ equa-
tion, in sizes 8�L�32. We also simulated a generalized
conserved RSOS model �CRSOS� �25,26�, which belongs to
the VLDS class, in sizes 16�L�128 �growth rules of this
model are given in Ref. �26��.

MAHD and MIHD are also different in the VLDS class,
as shown in Fig. 3�a�. The MAHD has skewness S�0.63
and there is negligible difference between the scaled curves
for L=16 �not shown in Fig. 3�a�� and L=32. The right tails
of the MIHDs show small finite-size effects �Fig. 3�a��, but
the distance from the MAHD increases with L. This indicates
that MAHD and MIHD are also different in this class. As
L→�, we estimate S�0.55 for the MIHD, as shown in Fig.
3�b�. Also note that both EHD have Gaussian-shaped right
tails �
exp�−m2��.

On the other hand, MAHD and MIHD of the CRSOS
model have non-negligible finite-size effects. Extrapolation
of the skewnesses of EHD of the CRSOS model in finite-size
lattices are also shown in Fig. 3�b�. They suggest that
MAHD and MIHD of both models are asymptotically the
same. From the symmetry of the VLDS equation, it means
that �4�0 for the CRSOS model, similarly to its one-
dimensional original version, which is exactly solvable �29�.

III. MAHD AND MIHD OF AN EXACTLY
SOLVABLE MODEL

In order to highlight the difference between MAHD and
MIHD and its relation to the height distribution, we consider

an exactly solvable model of random deposition and erosion
with an inert flat substrate at height h=0, in the erosion-
dominated regime. In this model, q�1 /2 is the probability
of single-particle erosion �h→h−1� and 1−q of deposition
�h→h+1�, but erosion is possible only if h�0.

The model corresponds to a random walk with a reflecting
wall at h=0. In the steady state, the probability of height h,
P�h�, obeys

P�h� = qP�h + 1� + �1 − q�P�h − 1�, h � 1, �3�

and

P�0� = qP�1� + qP�0� . �4�

This gives the PDF

P�h� = 	2q − 1

q

	1 − q

q

h

, �5�

with average height �h�= 1−q
2q−1 above the substrate. In the

limit q→1 /2, we have P�h�= 1
�h� exp�−h / �h�� with large �h�.

Now consider that one measures the extremes in a set of L
�independent� columns. At this point, it is important to ob-
serve that extremes must be measured relative to the average
height �h�, similarly to the other interface models. Thus,
maximal heights are maximal values of h− �h� and minimum
heights are maximal values of �h�−h.

Concerning the MAHD, the conditions of applicability of
Gumbel’s first asymptotic distribution are satisfied, thus
scaled MAHD is g�x ,1� �explicit form given below�.

Concerning the MIHD, we observe that the minimum ab-
solute height is typically at the substrate �h=0� if L is large,
i.e., it is highly probable to have at least one column with
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FIG. 3. �Color online� �a� Scaled MAHD in L=32 �solid curve�
and MIHD in L=32 �dashed curve� and L=16 �squares� of the
VLDS equation. �b� Finite-size dependence of the skewness S of
EHD of the VLDS equation �crosses for MAHD, circles for MIHD�
and of the CRSOS model �squares for MAHD, triangles for MIHD�.
The variable 1 /L2/3 provides the best linear fits of the data �dashed
lines�.
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h=0 in the erosion-dominated regime. Thus the relative

minimum is the average height of the L columns, h̄L, and the
MIHD is the distribution of those values �of course, the en-

semble average of h̄L is �h��. Since all columns are uncorre-

lated, fluctuations in h̄L are Gaussian and the variance is L
times smaller than the variance of the PDF, ���h2�
− �h�2= q�1−q�

�2q−1�2 . The probability of an absolute minimum m is
proportional to exp�−�m− �h��2 / �2� /L��, and so is the
MIHD.

The difference between the scaled MAHD and MIHD is
easily confirmed by visual inspection of the plots shown in
Fig. 4. Gumbel’s first asymptotic distribution shown there is
given by

g�x;n� = � exp�− n�e−b�x+s� + b�x + s��� , �6�

where b=����n�, s= �ln n−��n�� /b and �=nnb /��n�, with
��x� the Gamma function and ��x�=� ln ��x� /�x �5,7�.

The local height distribution �PDF� of this deposition-
erosion model is highly asymmetric, with skewness SPDF

= 1
�q�1−q� , so that SPDF→2 as q→1 /2. It contrasts with the

slight asymmetry of KPZ �SPDF�0.26 �27�� and VLDS
�SPDF�0.20 �25�� classes. Thus, comparison of Figs. 1�a�,
3�a�, and 4 strongly suggests that the difference between
MAHD and MIHD is connected with the asymmetry of the
height distribution.

IV. AVERAGE EXTREMAL HEIGHTS AND COMPARISON
WITH GUMBEL DISTRIBUTIONS

We assume that the average values of extremes of KPZ
and VLDS interfaces, �m�, scale as

�m� � L�m. �7�

The average roughness W scales with the roughness expo-
nent �. We estimate �m by extrapolation of effective expo-
nents

�m�L� �
ln��m��L�/�m��L/2��

ln 2
, �8�

similarly to the procedure usually adopted to calculate the
roughness exponent �see, e.g., Ref. �27��. Accurate calcula-
tion of � is usually performed with results of the discrete

models instead of the growth equations, thus here we will
also follow this procedure.

Figures 5�a� and 5�b� show �m�L� versus 1 /L for the KPZ
and VLDS models, respectively, obtained with the average
maximal heights. The estimates of �m are consistent with the
best known estimates of the roughness exponents ��0.39
�KPZ� �27� and ��0.67 �VLDS� �25�. Results obtained with
the average minimal heights are similar to those of Figs. 5�a�
and 5�b�. The fact that average values of extremes scale as
the average roughness in the KPZ and VLDS classes in 2
+1 dimensions suggests that the roughness can be used as an
estimate of the order of magnitude of extremal height fluc-
tuations. This feature may be important to foresight extremal
fluctuations from roughness data.

However, this result contrasts with EW growth, where �m�
scales as the squared roughness �7� �which we also con-
firmed by simulation�. In Ref. �7�, it is shown that uncorre-
lated Gaussian fluctuations with roughness scaling as W
��ln L �which is the case of EW in d=2� also lead to �m�
�W2. Thus, the EW scaling of �m� may be related to a
weaker influence of correlations when compared to other
growth processes. Anyway, similar argument does not work
for EW in d=1, thus we believe that it should not be consid-
ered a full explanation of the distinct EW scaling.

Now we compare the EHD of the nonlinear growth mod-
els with Gumbel curves �Eq. �6��. This comparison is also
performed with data for the EW equation �KPZ with �2=0�,
which was integrated with �2 /D=3 and �t=0.01 in box sizes
8�L�64.

In Fig. 6, we show the MAHD of the growth models and
Gumbel curves with the same skewnesses: 0.79 for KPZ
�Gumbel with n=1.95�, 0.63 for VLDS �n=2.90�, and 0.68
for EW �n=2.60�. In all cases, the Gumbel curves provide
reasonable fits of their peaks in log-linear plots, but the dis-
crepancies in the tails are clear. Similar discrepancies are
found in comparisons with MIHD of KPZ and VLDS
classes. Thus, despite the wide applicability of Gumbel sta-
tistics to correlated systems, it is not able to represent the
EVS of important interface growth processes in two-
dimensional substrates, including the linear EW growth.

Finally, it is also interesting to note the right tail of the
MAHD for EW growth, shown in Fig. 6, has a Gaussian

-5 0 5 10
x

10
-4

10
-2

10
0

σP
(m

)

FIG. 4. �Color online� Scaled MAHD �solid curve� and MIHD
�dashed curve� of the random deposition-erosion model in the
erosion-dominated regime.
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FIG. 5. Effective exponents �m�L� of discrete models: �a� KPZ
class �BD, crosses; etching, triangles; RSOS, squares� and �b�
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shape �
exp�−m2��, which confirms the analytical prediction
by Lee �7�.

V. CONCLUSION

We showed that interface growth models with asymmetric
local height distributions have different maximal and mini-
mal height distributions, the most important examples being
the KPZ and the VLDS classes in two dimensions. In each
class, a pair of universal curves may be maximal or minimal
height distributions depending on the sign of the relevant
nonlinear term. The average maximal and minimal heights of
KPZ and VLDS models scale as the average roughness, in

contrast to the EW class. All extreme height distributions of
interface growth models, including the linear EW model,
cannot be fit by generalized Gumbel distributions.

Although the statistical analysis of interfaces use to focus
on height distributions and/or roughness scaling �12�, recent
studies show that the statistics of global quantities are very
useful to characterize them �2�. The EVS has the same ad-
vantages of roughness distribution scaling for this task, such
as weak finite-size effects, but also reveals the sign of the
nonlinear terms if sufficiently accurate date is available. De-
spite the fact that MAHD and MIHD of the KPZ and VLDS
classes are rather similar and probably difficult to distinguish
with experimental data, this is not always the case. For in-
stance, in Fig. 4 we note that the distributions for the
deposition-erosion model are very different. Thus we expect
that the present work motivates experimental comparisons of
MAHD and MIHD.

Information on rare events is also essential in systems
where drastic changes in the dynamics occur if the global
minima or maxima attain certain values, such as in corrosion
damage. Finally, we believe that the present work also mo-
tivates additional studies of distributions of local extremes,
which may be important for some applications �e.g., friction
and parallel computing� �30�.
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